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ABSTRACT

The Bishop-Phelps Theorem asserts that the set of functionals which
attain the maximum value on a closed bounded convex subset S of a
real Banach space X is norm dense in X*. We show that this statement
cannot be extended to general complex Banach spaces by constructing a
closed bounded convex set with no support points.

Introduction
If S is a subset of a Banach space X, then a nonzero functional ¢ € X* is a
support functional for § and a point £ € S is a support point of S if |¢(z)] =
supyes lp(y)l-

In 1958 {4] Victor Klee asked if each closed bounded convex subset of a Banach
space must have a support point.

In 1961 E. Bishop and R. R. Phelps in their fundamental paper [1] proved
that the set of support functionals for a closed bounded convex subset S of a
real Banach space X is norm dense in X*, thereby verifying Klee'’s conjecture.
They also showed that the same theorem is true if the set S is the unit ball
of a complex Banach space. The natural question of whether this statement is
true in a complex Banach space for any closed bounded convex subset was left
open since then [6]. In 1977 Jean Bourgain [2| proved the remarkable result
that the Bishop—Phelps Theorem is correct if a complex Banach space X has the
Radon-Nikodym property.
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In this note we construct a complex Banach space X and a closed bounded
convex subset S of X such that the set of the support points of S is empty.

This shows that in general Banach spaces the complex version of Klee’s Con-
jecture is false. In particular, it means that the Bishop-Phelps Theorem cannot
be extended to Complex Spaces.

I am indebted to Professor Joe Diestel for helpful conversations concerning the
subject of this note.

The counterexample

Let H be the algebra of analytical functions bounded on the open unit disk D
with the norm || f|| = sup,¢p | f(2)| and with the identity function E. Each point
z.€ D defines a point evaluation functional p,(f) = f(2). It is well known that
“‘H*® may be identified with the dual space of some Banach space X such that
each functional ¢, is an element in X [3]. We use the notation <, > to describe a
scalar product between a Banach space and its dual. Let S be the closed convex
hull of the elements {,}: Then obviously for each point s € S and each function
f € H* we have

(1) lIsll < 1,(s, E) =1
and
(2) sup |(s, )| = [If1-
s€S
LEMMA 1: Suppose that f € H™ and ||f|| < 1. Then either f = AE, |A\| =1 or
(3) lim (s, *) = 0
k—o0

for any point s € S.

Proof: Suppose that f # AE. Since finite convex linear combinations of point
evaluations are dense in the set S and the sequence {f*} is bounded by norm we

n
§= _S_ APz,
i=1

where a; > 0 for all 4 and ) 7 ; oy = 1. Put 6 = sup; <<, | f(2:)]. Then

need only consider the case

(s, AN <) el A=) < 0F Y el = 6.
=1 i=1

Since || f|| < 1 the maximum modulus principle implies that 6 < 1, which implies
(3). |
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LEMMA 2: Suppose there exists an element s € S and a function f € H* such
that (s, f) = ||f|| = 1. Then

(4) (s, f") =1

for any positive integer n.

Proof: Let M be the space of maximal ideals of the algebra H* and let C(M)
be the algebra of all continuous functions on M with the sup-norm. The algebra
H*> is a Banach subalgebra of the algebra C(M). Let § be a norm preserving
extension of the functional s onto the space C(M). By the Riesz theorem there
exists a regular Borel measure dv on M such that the equality

(s,9) = /Mgdv

holds for any function g € H*. The conditions (1) imply that f, djv| <1 and
f a v = 1. It means that the measure dv is a nonnegative probability measure
on M. This implies that the function f is equal to the identity function on the
support of the measure dv, which implies (4). |

THEOREM 1: Suppose that the modulus of the functional g € H™ attains its
maximum on the set S. Then there exists a complex number o such that g = oF.

Proof: There exists an element sy € S such that

| < 50,9 > | =sup| <s,g>|
s€ES

From (2) we have that | < sg,g > | = ||g]|- If g is the zero function, then we can
put @ = 0. If g is a nonzero function, then there exists a complex number A such
that < sp,A\g >= ||Ag|| = 1. Put f = A\g. Then (4) and Lemma 1 implies that
f=7vF and g = Af = \YE. ]

So the line oF in H* is the set of all support functionals for the closed bounded
convex subset S in the predual space X of #*.

Let o be the point evaluation at 0 and let L be the line in X generated by
@o. Let X; be the quotient space X/L and m: X — X; be the corresponding
quotient map. The dual space X is the annihilator ¢F of the vector g in the
space X* which is the hyper-plane H§° of all functions in H* vanishing at 0.
Put S; = m1(S). Then obviously the set S; is closed bounded and convex.
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THEOREM 2: The set of support points of Sy is empty.

Proof:  Since the equality < m(s), f >=< s, f > holds for any point s € S
and any functional f € ¢, Theorem 1 implies that the only possible support
functional for the set S is a functional AE. Since < g, E >=1, the line AE has
zero intersection with the subspace ¢ .

For this reason the only one functional which attains a maximum modulus on
the set S is the zero functional and the set of support points of the set S; in the
predual to the space H§® is empty. |
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