A COUNTEREXAMPLE TO THE BISHOP-PHELPS THEOREM IN COMPLEX SPACES

BY

VICTOR LOMONOSOV

Department of Mathematics, Kent State University Kent, OH 44242, USA e-mail: lomonoso@mcs.kent.edu

ABSTRACT

The Bishop-Phelps Theorem asserts that the set of functionals which attain the maximum value on a closed bounded convex subset S of a real Banach space X is norm dense in X^* . We show that this statement cannot be extended to general complex Banaeh spaces by constructing a closed bounded convex set with no support points.

Introduction

If S is a subset of a Banach space X, then a nonzero functional $\varphi \in X^*$ is a support functional for S and a point $x \in S$ is a support point of S if $|\varphi(x)| =$ $\sup_{y\in S}|\varphi(y)|.$

In 1958 [4] Victor Klee asked if each closed bounded convex subset of a Banach space must have a support point.

In 1961 E. Bishop and R. R. Phelps in their fundamental paper [1] proved that the set of support functionals for a closed bounded convex subset S of a real Banach space X is norm dense in X^* , thereby verifying Klee's conjecture. They also showed that the same theorem is true if the set S is the unit ball of a complex Banach space. The natural question of whether this statement is true in a complex. Banach space for any closed bounded convex subset was left open since then [6]. In 1977 Jean Bourgain [2] proved the remarkable result that the Bishop-Phelps Theorem is correct if a complex Banach space X has the Radon-Nikodym property.

Received September 10, 1998

26 V. LOMONOSOV Isr. J. Math.

In this note we construct a complex Banach space X and a closed bounded convex subset S of X such that the set of the support points of S is empty.

This shows that in general Banach spaces the complex version of Klee's Conjecture is false. In particular, it means that the Bishop-Phelps Theorem cannot be extended to Complex Spaces.

I am indebted to Professor Joe Diestel for helpful conversations concerning the subject of this note.

The counterexample

Let \mathcal{H}^{∞} be the algebra of analytical functions bounded on the open unit disk \mathcal{D} with the norm $||f|| = \sup_{z \in \mathcal{D}} |f(z)|$ and with the identity function E. Each point $z \in \mathcal{D}$ defines a point evaluation functional $\varphi_z(f) = f(z)$. It is well known that \mathcal{H}^∞ may be identified with the dual space of some Banach space X such that each functional φ_z is an element in X [3]. We use the notation $\langle \cdot, \cdot \rangle$ to describe a scalar product between a Banach space and its dual. Let S be the closed convex hull of the elements $\{\varphi_z\}$. Then obviously for each point $s \in S$ and each function $f\in\mathcal{H}^\infty$ we have

$$
(1) \t\t\t\t||s|| \le 1, \langle s, E \rangle = 1
$$

and

(2)
$$
\sup_{s\in S} |\langle s, f\rangle| = ||f||.
$$

LEMMA 1: Suppose that $f \in \mathcal{H}^{\infty}$ and $||f|| \leq 1$. Then either $f = \lambda E$, $|\lambda| = 1$ or

$$
\lim_{k \to \infty} \langle s, f^k \rangle = 0
$$

for any point $s \in S$ *.*

Proof: Suppose that $f \neq \lambda E$. Since finite convex linear combinations of point evaluations are dense in the set S and the sequence $\{f^k\}$ is bounded by norm we need only consider the case

$$
s=\sum_{i=1}^n\alpha_i\varphi_{z_i}
$$

where $\alpha_i \geq 0$ for all i and $\sum_{i=1}^n \alpha_i = 1$. Put $\theta = \sup_{1 \leq i \leq n} |f(z_i)|$. Then

$$
|\langle s, f^k \rangle| \leq \sum_{i=1}^n \alpha_i |f^k(z_i)| \leq \theta^k \sum_{i=1}^n |\alpha_i| = \theta^k.
$$

Since $||f|| \leq 1$ the maximum modulus principle implies that $\theta \leq 1$, which implies $(3).$

LEMMA 2: *Suppose there exists an element* $s \in S$ *and a function* $f \in \mathcal{H}^{\infty}$ *such that* $\langle s, f \rangle = ||f|| = 1$ *. Then* (4) $\langle s, f^n \rangle = 1$

for any positive integer n.

Proof. Let M be the space of maximal ideals of the algebra \mathcal{H}^{∞} and let $C(M)$ be the algebra of all continuous functions on M with the sup-norm. The algebra \mathcal{H}^{∞} is a Banach subalgebra of the algebra *C(M)*. Let \hat{s} be a norm preserving extension of the functional s onto the space $C(M)$. By the Riesz theorem there exists a regular Borel measure $d\nu$ on M such that the equality

$$
\langle s,g\rangle=\int_M g\,d\nu
$$

holds for any function $g \in \mathcal{H}^{\infty}$. The conditions (1) imply that $\int_M d|\nu| \leq 1$ and $\int_M d\nu = 1$. It means that the measure $d\nu$ is a nonnegative probability measure on M . This implies that the function f is equal to the identity function on the support of the measure $d\nu$, which implies (4).

THEOREM 1: Suppose that the modulus of the functional $g \in \mathcal{H}^{\infty}$ attains its *maximum on the set S. Then there exists a complex number* α *such that* $g = \alpha E$ *.*

Proof: There exists an element $s_0 \in S$ such that

$$
|< s_0, g >| = \sup_{s \in S} |< s, g >|.
$$

From (2) we have that $| < s_0, g > | = ||g||$. If g is the zero function, then we can put $\alpha = 0$. If g is a nonzero function, then there exists a complex number λ such that $\langle s_0, \lambda g \rangle = ||\lambda g|| = 1$. Put $f = \lambda g$. Then (4) and Lemma 1 implies that $f = \gamma E$ and $g = \lambda f = \lambda \gamma E$.

So the line αE in \mathcal{H}^{∞} is the set of all support functionals for the closed bounded convex subset S in the predual space X of \mathcal{H}^{∞} .

Let φ_0 be the point evaluation at 0 and let L be the line in X generated by φ_0 . Let X_1 be the quotient space X/L and $\pi_1: X \to X_1$ be the corresponding quotient map. The dual space X_1^* is the annihilator φ_0^{\perp} of the vector φ_0 in the space X^* which is the hyper-plane H_0^{∞} of all functions in H^{∞} vanishing at 0. Put $S_1 = \pi_1(S)$. Then obviously the set S_1 is closed bounded and convex.

28 v. LOMONOSOV Isr. J. Math.

THEOREM 2: The set of support points of S_1 is empty.

Proof: Since the equality $\langle \pi_1(s), f \rangle = \langle s, f \rangle$ holds for any point $s \in S$ and any functional $f \in \varphi_0^{\perp}$, Theorem 1 implies that the only possible support functional for the set S_1 is a functional λE . Since $\langle \varphi_0, E \rangle = 1$, the line λE has zero intersection with the subspace φ_0^{\perp} .

For this reason the only one functional which attains a maximum modulus on the set S_1 is the zero functional and the set of support points of the set S_1 in the predual to the space H_0^{∞} is empty.

References

- [1] E. Bishop and R. R. Phelps, *A proof that* every Banach space is *subreItexive,* Bulletin of the American Mathematical Society 67 (1961), 97-98.
- [2] J. Bourgain, On *dentability and the Bishop-Phelps property,* Israel Journal of Mathematics 28 (1977), 268-271.
- [3] K. Hoffman, *Banach Spaces of Analytic Punctions,* Prentice-Hall, Engelwood Cliffs, NJ, 1962.
- [4] V. Klee, *Extremal structures of convex sets,* Mathematische Zeitschrift 69 (1958), 98.
- [5] J. Lindenstrauss, *On operators which attain* their *norm,* Israel Journal of Mathematics 3 (1963), 139-148.
- [6] R. R. Phelps, *The Bishop-Phelps Theorem in Complex Spaces: An Open Problem,* Lecture Notes in Pure and Applied Mathematics 136 (1991), 337-340.